If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+28y+26=0
a = 2; b = 28; c = +26;
Δ = b2-4ac
Δ = 282-4·2·26
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-24}{2*2}=\frac{-52}{4} =-13 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+24}{2*2}=\frac{-4}{4} =-1 $
| 14x-35=27x-63 | | 3(v-4)=4(v-6) | | 8x+32=12x-4 | | 6y-9=90 | | 5=15x+65 | | 6y+9=90 | | x-42=-34 | | -2(y+8)=7y+11 | | 56x+49=30x+12 | | X-1/2x-1=1 | | 1/2x-2=-2x-4 | | 8=4(q-2)+9 | | (4y+18=6y) | | 9y-11=2(y-2) | | -0,4/x-0,5=1 | | 40x^2-9x-9=0 | | n+51=117 | | 2(w-1)=-2w+34 | | 5x-(x+3)=1/(9x+18)-5 | | 2(4x-1)=4x-6 | | 35=5/9w | | 2(n+23)=56 | | 3x+1-4+(2x)=3 | | 5(x+2)=2+3(x+4)-4 | | -5/3x+9=2^(x-1) | | 6x-3=7x-8 | | 12+9n=48 | | 4x+3=25x-635 | | 1/7x+3=-6/7x-2 | | 45=8x-51 | | 2x=2x-4x | | 2a+6=12a= |